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LIQUID CRYSTALS, 1990, VOL. 7, No. 2, 185-201 

Static periodic distortion above bend Freedericksz transition 
in nematics 

by U. D. KIN1 
Raman Research Institute, Bangalore 560 080, India 

(Received 29 June 1989; accepted 25 July 1989) 

The linearized mathematical model developed by Allender, Hornreich and 
Johnson [1987, Phys. Rev. Lett., 59, 26541, for explaining the appearance of the 
magnetic field induced stripe phase (SP) above the bend Freedericksz threshold 
in a nematic close to the smectic transition, is generalized to the case of uniform 
tilt B1 of the nematic director no away from the homeotropic with the field H 
acting normal to no. Calculations of SP threshold and domain wave vector 
Q are presented for different elastic ratios and tilts 8, by exact computation 
of the ground state homogeneous deformation (HD) under the rigid anchoring 
hypothesis. Approximate estimates based on energetics, explicitly taking 
into account the modal symmetry of perturbations, agree well with the results of 
exact calculations based on the solution of torque equations. For homeotropic 
alignment (0, = 0) calculations predict that the SP domain width should decrease 
when the sample is heated away from the smectic transition point; at  a 
given temperature when H is rotated through a small angle with respect to 
the sample planes the domains should grow wider. These points can be verified 
experimentally. It is also shown that for sufficiently high initial tilt 8, away 
from the homeotropic director alignment, SP may be quenched. Materials, 
such as nematic polymers, which exhibit static periodic domains (PD) in splay 
geometry (of the kind discovered by Lonberg and Meyer, 1985, Phys. Rev. Lett., 
55, 718) may also show SP for director tilts B, close to the homeotropic. It 
appears possible to make tentative predictions regarding the effects of weak 
anchoring and oblique magnetic fields on the SP threshold and domain wave 
vector. 

1. Introduction 
The Oseen-Frank continuum theory of curvature elasticity [ 1-41 has successfully 

accounted for the elastic behaviour of nematic liquid crystals acted upon by external 
influences such as a magnetic field H. This theory describes the elastic response 
of nematics in terms of the splay, twist and bend elastic constants, K,  , K,, K3 , respect- 
ively. The elastic constants can be conveniently determined by studying magnetic 
field induced Freedericksz transitions for different symmetric initial orientations 
of the nematic director no in a flat sample. When H is increased above the 
Freedericksz threshold the director field suffers a homogeneous distortion (HD) 
whose optical detection leads to the determination of the effective elastic constant of 
the geometry. 

The elastic constants, which are functions of temperature, are of the same order 
of magnitude in most nematics. In certain nematics, however, one or more of the 
elastic constants may attain anomalous values, For instance, in certain compounds 
near the nematic-smectic A transition temperature TNA, K3 (and even K,) may 
become very large [l-41. In certain nematic polymers, K,  and K3 are large compared 
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186 U. D. Kini 

with K2 [5 ] .  It is natural to expect interesting deviations from normal behaviour when 
such systems are subjected to external fields. 

It was demonstrated by Cladis and Torza [6] that a deformed nematic layer 
undergoes a transition to a periodically distorted stripe phase (SP) when the sample 
is cooled to near T N A ;  they also presented theoretical analysis to account for SP. While 
studying the bend Freedericksz transition in similar nematic systems, Gooden et al. 
[7] observed SP at temperatures close to T N A  for sufficiently strong H. 

In a recent paper, Allender et al. [8] offered a plausible explanation for the onset 
of SP by assuming that close to T N A ,  in the bend geometry, a splay-bend HD first 
occurs for H 2 H B ,  the bend Freedericksz threshold. When H is further increased, 
HD gets further deformed and subsequently becomes energetically unfavourable as K3 
is very large. The total free energy can be reduced if the director field relaxes out of 
the (H, no) plane via a deformation having periodicity normal to the (H, no) plane; 
this is SP. Using the rigid anchoring hypothesis and an approximate mathematical 
model, Allender et al. [8] have obtained good qualitative agreement with the results 
of [7]. 

Mention may now be made of a related field effect-the static periodic distortion 
(PD) discovered by Lonberg and Meyer [9] in the splay geometry of a polymer 
nematic having K,  9 IS2 [5 ] ;  instead of the usual splay-bend HD which is expected 
for H 2 H,,  the splay Freedericksz threshold, Lonberg and Meyer observed a 
distortion having periodicity normal to the (no, H) plane. Using the continuum theory 
they showed that PD, which is associated with both splay and twist distortions close 
to the PD threshold, has a lower threshold than HD as long as K1 is sufficiently higher 
than K , .  Linear threshold analysis [lo-141, which has been reported on the possible 
effects of anchoring energy [ 15, 161, oblique magnetic field [ 17, 181 and initial director 
tilt on P D  threshold, does suggest that in many cases PD develops out of perturbation 
modes having a particular symmetry. 

Interestingly, the values of elastic ratios definining the range of SP in the calcu- 
lation of [8] do, to a certain extent, overlap the elastic ratios of polymer nematics [5]. 
The questions, therefore, arise (i) whether SP can occur in the bend geometry of 
polymer nematics (ii) whether SP can be regarded as growing out of perturbation 
modes having a particular symmetry (iii) how SP threshold and domain width are 
affected by initial director tilt, weakening of the anchoring energy, tilt of H relative 
to the sample planes and effect of applying H obliquely normal to no. 

In this communication, which essentially complements [8], an attempt is made to 
answer some of the above questions. In $2 the mathematical model is described, the 
governing equations set up and the boundary conditions discussed. Section 3 describes 
the approximate and exact methods of solution. In $4 the results are presented, 
compared with experiment and interpreted where possible. Section 5 gives a brief 
account of P D  in tilted nematics and helps build a phase diagram for the different 
deformations occurring in different ranges of director tilt. In the last section, tentative 
predictions are made of the possible effects of weak anchoring and oblique field on 
the SP threshold and domain wave vector. 

2. Governing equations 
Consider a nematic uniformly aligned between plates z = h making angle 61 

with the z axis such that 

no = (S ,  0, C); S = sine,; C = cos 8,. (2.1) 
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Stripe phase above bend threshold 187 

A magnetic field H = (HC, 0, - H S )  is applied normal to no in the xz plane. It is 
known from the continuum theory that above the Freedericksz threshold 

ffC(01) = (Z/2h)[(K,S2 + K3C2>/XJ’2 (2.2) 

the director field suffers a homogeneous deformation such that 

(2.3) 

(2.4) 

I n = (So ,  0, Co);  S, = sine(<), C, = cosO(<); 

a(8)d28/d<Z + b(O)(dB/d<)* + d(8) = 0; 

< = z/h; 48)  = K I S ;  + K3C;;  

b(@ = ( K ,  - K,)S,C,; d(8) = ~ ~ h ~ H ~ ( s i n ( 2 8  - 20,))/2 

where x,( > 0) is the diamagnetic susceptibility anisotropy. As done earlier [8], the 
nematic is assumed to be rigidly anchored at the sample planes so that to obtain the 
ground state HD, we solve (2.3) along with the boundary condition 

O(z = k h )  = O1 or O(< = & 1) = 8,.  

It is obvious that the HD is even with respect to the sample centre. This fact has a 
bearing on the symmetry of the perturbations as shall be seen presently. 

Considering perturbations 8’(x, y, z) and &(x, y ,  z) imposed on HD(2.3) such that 

n‘ = [sin(@ + Q’)cos~’, sin4’, cos(8 + 8’)cos4’]. (2.5) 

By retaining terms to second order in the perturbations and perturbation gradients, 
the excess free energy corresponding to the perturbations, FA2), is written down. The 
.torque equations are obtained by minimizing Fi2) with respect to the perturbations: 

where a prime denotes partial differentiation with respect to the subscript(s). These 
torque equations are solved with boundary conditions 

O’(z = &h) = 0; +’(z = k h )  = 0; (2.7) 
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188 U. D. Kini 

for rigid anchoring. Following [8], we shall consider only the y ,  z dependence of the 
perturbations; this means we ignore, for the moment, the terms enclosed by [ ] in 
(2.6). Taking into account the symmetry of the ground state deformation 8, it is seen 
that (2.6) supports two uncoupled modes: 

Mode 1: 8‘ even, 4’ odd with respect to z = 0 or 5 = 0; 

Mode 2: 8‘ odd, 4’ even with respect to z = 0 or 5 = 0. 
} (2.8) 

As 8 is even and as Mode 1 conforms to the same symmetry, it is natural to expect 
that Mode 1 will have a lower threshold than Mode 2 for a given set of parameters. 
It may be noted that Mode 1 has the same spatial symmetry as the mode studied in 
connection with PD [9-141. This fact is helpful in comparing SP and PD in 95. 

3. Methods of solution 
The SP threshold has been determined from two different view points which are 

briefly described below. 
The approximate solution is obtained almost exactly as suggested by [8] but with 

slight differences. For a given set of material constants K , ,  K3 ,  x a ,  and director tilt 8,, 
(2.3) and (2.4) are numerically solved by employing the orthogonal collocation 
method [19, 201; the zeros of the Legendre polynomial of order 24 are used as 
collocation points [21]. With the field Hslightly higher than H,(8,) of (2.2) the ground 
state HD is determined from (2.3), (2.4). From (2.6), it is seen that 8‘ and 4’ are out 
of phase along y .  Taking note of the symmetry of Mode 1 and also the boundary 
conditions (2.7), it is assumed that 

8’ = crcos(~c(/2)cos(Qy’); 4’ = flsin(z()sin(Qy’); y’ = y/h,  (3.1) 

where CI and p are constants of first order magnitude. The remaining steps follow as 
in [S]. The excess free energy due to the perturbations, Ff), is written to second order 
in c( and p. The demand that Fh2) should vanish leads to a quadratic in Q2. As Q2 is 
real, one finds the condition 

D = 0, (3 4 
(equation (1 0) of [S]). H is increased in small steps; for each value of H, the HD is 
computed. This is done till (3.2) is satisfied for H = Ifsp; simultaneously, Q, the wave 
vector at SP threshold is calculated from equation (13) of [8] (please see note 22 in the 
references). 

In the exact method of solution, 8(() is calculated as before from (2.3), (2.4). To 
solve the torque equations (2.6), the following ansatz is used: 

8’ = u(()cosQ,y’; 4’ = v(5)sinQ,y’. (3.3) 
This results in a pair of coupled linear ordinary differential equations in u and v with 
(variable) coefficients which are functions of the ground state HD, the material 
constants (including K,) and the scaled wave vector of periodicity along y ,  Q,. Using 
the collocation method, a compatibility condition results if the boundary values (2.7) 
are to be satisfied. For a given, sufficiently high value of Q,, the compatibility 
condition is satisfied for a field H = H(Q, )  (as pointed out by Allender et al. [8], as 
Q, is decreased, H(Q,) increases; when Q, diminishes beyond a certain lower limit, no 
solution can be found for H(Q,)). When Q, is increased, H(Q,) decreases until it 
reaches a minimum H(Q> when Q, = Q; it must be remembered that H ( Q )  is still 
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Stripe phase above bend threshold 189 

higher than Hc(O,). We regard Hsp = H ( Q )  to be the SP threshold and Q to be the 
SP wave vector at threshold. Q = 27ch/l where 112 can be said to be the ‘width’ of 
the dark (or bright) bands which result as SP threshold. As made clear [22], Hsp found 
from the approximate and exact methods agrees well; Q from the exact calculation is 
found to be slightly lower than Q found from the approximate one. 

It is seen from (2.3) and (2.6) that H always occurs in combinations of the form 
xah2H2. It is thus possible to scale out both xa and h by choosing some convenient 
values for them. In this work, it is throughout assumed that xu = lOP7cgs (which is 
valid for many nematics [l-41) and that h = 0.01 cm. SP can now be described by the 
scaled wave vector Q and by the scaled field 

h, = hS(01) = Hsp/HC(0i) = H(Q)/Hc(Oi>. (3.4) 

The value h, = 1 would correspond to the HD threshold (2.2). The tilt angle 8, is 
measured in radian. The values of the elastic constants are also taken in the range 
10-6-10-7cgs [l-41. Ultimately, the results are all presented in terms of the elastic 
ratios or reduced elastic constants. 

4. Results 
In this section, SP threshold and wave vector are described for different elastic 

ratios and initial director tilt. As already mentioned, the approximate and exact 
calculations agree well with each other as also with figure 2 of [8] so far as threshold 
is concerned. Hence, only the results of the exact method are presented. To the extent 
that the variation of Q with different parameter is also presented here, the present 
work can be said to complement the effort of [8]; we have some knowledge of the way 
the domain size is expected to vary according to the continuum theory. 

It may be noted that in the calculations of [8], the authors have considered the 
elastic ratio K,/K, varying from about 7 to 50 and K 2 / K I  in the range 0.25 to 0.75. 
Interestingly, there appears to be a polymer nematic TMV (tobacco mosaic virus) 
whose elastic ratios fall in this range [23]; K3/K,  = 8.8; K 2 / K I  = 0.22. Thus it appears 
that a rigidly anchored homeotropic layer of such a nematic may exhibit SP when 
subjected to H in the bend geometry. In addition, an elastic ratio K,/K, = 0.22 would 
correspond to a nematic which should exhibit PD under rigid anchoring in the splay 
geometry (0, = n/2) and also for certain tilts away from the homogeneous [9-141. 
This motivates a study of the different regions of existence of PD, the Freedericksz 
HD and SP in the case of a system like TMV taking molecular tilt as a parameter. 
Keeping this in mind, the material parameters are so chosen as to include the elastic 
ratios K 3 / K ,  = 10, K 2 / K ,  = 0.25 as subsets. Initially, the results are presented for the 
homeotropic configuration (0, = 0) for different elastic ratios. As these ranges of the 
material parameters roughly correspond to those expected close to T N A ,  it seems 
possible to compare these results with those of [7, 81. 

Figure 1 contains plots of h, and Q as functions of k, = K, /K ,  for different values 
of k, = K 2 / K 1 .  At a given k,,  as k, is decreased, h, and Q increase. When k, -+ a 
lower limit k,L(k2),  h, and Q diverge showing that for k, < k,,, SP cannot occur. 
Predictably, k,, increases with k,; the k,  range of occurrence of SP increases when k, 
is diminished. Figure 1 is in good agreement with figure 2 of [8] as far as the variation 
of h, is concerned. As k, decreases when the sample is heated away from TNA, one has 
the qualitative conclusion [7, 81 that when the temperature of the sample is raised 
sufficiently away from T N A ,  SP is suppressed. 
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0 10 20 
k3 

Figure 1. Plots of h,(BI = 0) = H,,(B, = O)/H,(B, = 0) and Q as functions of k3 = K 3 / K ,  
for different values of k2 = K 2 / K , .  8, = 0; initial orientation is homeotropic. Hsp is the 
stripe phase threshold and H,  = (n /2h) (K, /~ . )~~* the bend Freedericksz field. The sample 
thickness 2h = 0.02 cm in all calculations. Q is the scaled wave vector at SP threshold; 
Q = 2nh/l where 4 2  is the width of the stripes. Curves have been drawn for k2 = (I) 
0.1 (2)  0.25 (3) 0.5 (4) 0.75. For a material showing nematic-smectic A transitions, the 
direction of increasing k3 shows an approach to the smectic phase. The occurrence of SP 
is favourable (i.e. the scaled SP field h, is lower) when k3 is high and k2 small. The h, curves 
are in good agreement with those of [8], figure 2. The polymer nematic TMV has elastic 
ratios roughly corresponding to k, = 0.25, kl = 10 [23]. For a given k2 both h, and Q 
diverge when k,  is sufficiently diminished. This indicates that when the sample is heated 
sufficiently away from the smectic point, SP is quenched and the SP domain width 
becomes narrower before SP disappears; the latter point can be checked experimentally. 

These conclusions are reflected in figures 2 and 3. Figure 2 depicts the variations 
of h, and Q as functions of k,  for different k, . For a given k , ,  h, and Q increase with 
k,; both h, and Q diverge when k, -+ an upper limit kzL(k3); higher the value of k, ,  
greater the corresponding k,, . 

Figure 3 is included mainly for completeness and shows the dependence of h, and 
Q on K ,  for a given K2 and different K, . For fixed (K,, K,), h, initially increases with 
K ,  and then diverges when K, -+ an upper limit K I L ( K 2 ,  K,);  K,L increases with K,. 
The domain wave vector Q shows a more interesting behaviour in that it diverges both 
in the limit K ,  + K,  and when K ,  + K I L ;  at an intermediate K,  , Q shows a minimum. 

One of the conclusions of experiment [7] is that for initial homeotropic orientation 
(0, = 0) when H is tilted in the xz plane away from the x axis by a small angle O H ,  
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Stripe phase above bend threshold 191 

Figure 2.  Variations of h,(B, = 0) and Q with k2 = K,/K,  for different k3.  Curves are drawn 
for k, = (1) 20 (2) 15 (3) 10 (4) 5.  Initial homeotropic orientation. The results of figure 2 
essentially complement those of figure 1.  As k2 may also diverge when the nematic is 
cooled towards the smectic A point, the direction of increasing k2 indicates approach to 
the smectic phase. It is seen that high k, and small k2 encourage formation of SP. 

SP is suppressed. It has been mentioned by Allender et al. [8] that they have obtained 
results in qualitative agreement with the above fact. Figure 4, which gives plots of h, 
and Q with B,, essentially shows agreement with the findings of [7,8]. It must be borne 
in mind that now the initial director tilt is no = (0, 0, 1) but the field H = (Hcos OH, 
0, - Hsin OH); in such a configuration, one no longer has a Freedericksz threshold; 
HD can develop at any nonzero field amplitude [24]. Thus, in this case, Hsp is divided 
by H,(B, = 0), the bend Freedericksz threshold, purely for the purpose of scaling. 
The change over to a tilted field is achieved by simply changing 8, to 8, in (2.3) and 
(2.6); (2.4) is left unchanged. It is found from figure 4 that as 8, is increased h, 
increases but Q diminishes. Beyond a certain limit 8, = 8,, solutions are no longer 
found for the SP threshold; in the same limit, Q decreases to a lower limiting value. 
Figure 4 shows that 8, increases when k,  is enhanced but decreases when k, is 
increased. As both k2 and k3 are expected to increase when a nematic is cooled toward 
TNA, it is not straightforward to predict how 8, will vary as the smectic point is 
approached. 

At this stage it may be advisable to explicitly compare the theoretical results 
obtained here and in [8] with the experimental observations of [7]. The nonoccurrence 
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192 U. D. Kini 

7.5, 

Figure 3. Plots of h,(B, = 0) and Q versus K,  for different values of K2 and K 3 .  Initial 
orientation is homeotropic. The elastic constants are measured in dynes. The sample 
thickness 2h = 0.02cm. The diamagnetic susceptibility anisotropy xu = lO-'cgs. 
K2 = 0.25 x lO-'dyne. Curveshavebeendrawnfor K3 = (1)2 x 10-6(2) 1.5 x 
(3) 10-6dyne. These plots have been presented mainly for the sake of completeness and 
illustrate a rather different kind of variation of Q. For fixed K 2 ,  K , ,  h, and Q diverge 
showing that an increase of K ,  is unfavourable for SP to occur. When K ,  decreases to 
about K2 at a given K,,  Q again diverges but h,r 4 1. Thus the indication that SP may 
not exist when K ,  and K2 are of comparable magnitude. The reason why h, does not 
diverge in the region of small K I  could be that though k2 = K 2 / K I  increases, k3 = K 3 / K ,  
also become appreciable. 

of SP for small k ,  and the suppression of SP by tilting H in the xz plane are points 
in qualitative agreement with [7]. But the conclusions regarding variation of SP 
domain width are still open to investigation. Does the SP domain width decrease with 
k,; ie, do the SP domains become narrower as the sample is heated away from TNA? 
Similarly at a given temperature, when H is tilted away from the x axis by a small 
angle, does the SP domain width increase? These points appear to merit a more 
detailed experimental survey. 

Another fact that must be clearly stated is that Gooden et al. [7] have found SP 
to occur above the bend Freedericksz transition only over a small temperature range; 
close to TNA, the undistorted homeotropic orientation appears to  go over directly to 
SP, apparently without the intervening HD. Thus, at  this point of time, one can only 
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1.02- 1.02- 
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3 

- 

1.01 

- 
I I , I ,  , < I , ,  

0 0.005 0.01 

- 

b 

Q 

0 0.005 0.01 

1 C 

Figure 4. Plots of h,(8,) and Q as functions of OH, the tilt angle of H with the x axis. 
Undistorted orientation is homeotropic; no = (0, 0, 1); = 0. The field H = (Hcos OH, 
0, - H sin 0,) is in the xz plane. In figures a, b, k3 = 10; k2 = (1) 0.1 (2 )  0.25. In figures 
c, d, k3 = 15; k2 = (1) 0.1 (2 )  0.25 (3) 0.5. For 8, # 0, homogeneous deformation 
develops without a threshold. h,(0,) = HSP(OH)/Hc(O, = 0); division by the bend 
Freedericksz field is only to ensure scaling. Beyond the limit 0, = O L ,  SP threshold does 
not seem to exist. In the limit 0, .+ O L ,  Q -+ a lower limit showing that SP domains 
should widen as H is rotated away from the x axis; this can be verified experimentally. 

say that the theoretical results only account for roughly half the observations of [7]. 
One cannot rule out the possibility, as suggested earlier by Chu and McMillan [25], 
that very close to TNA, perhaps SP occurs as a first order transition directly from the 
undistorted ground state. 

We now consider the case of initial uniform tilt at the sample boundaries (8, # 0). 
Figure 5 contains plots of h, and Q as functions of for different elastic ratios. It must 
be remembered that H is applied in the xz plane normal to the initial director 
orientation so that once more we consider SP occurring above the HD threshold. 
Both h, and Q are found to decrease when 8, is increased (ie the initial director tilt 
moves away from the homeotropic). When 8, + 8,, h, --t 1 (i.e. the SP threshold 
approaches the HD threshold) and Q tends to a lower limiting value. For a given k, ,  
OS is found to increase with k,.  Calculations have been presented for two different 
values of k3 .  For a material such as TMV, Bs z 043 radian. Thus, when the initial 
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a 
1.06- 

I 

0 0.1 0.2 

C 

Figure 5. Variation of h,(Ol) and Q with 01, the initial director tilt away from the homeotropic. 
Initial director orientation n,, = (S, 0, C);  H = (HC, 0, - H S )  as in equation (2.1). 
When H exceeds Hc(O,)  of equation (2.2), a homogeneous distortion first sets in. When 
His increased further, SP occurs at a threshold HSP(O,); h,(O,)  = Hsp(OI/Hc(Ol). Curves 
are drawn fork, = (1) 0.1 (2) 0.25. In figures (a), (b) k, = 10. In (c) and ( d ) ,  k, = 1.33. 
As O1 + O , ,  h, + 1 and Q + a lower limit. When the SP threshold diminishes too close 
to the HD threshold the ground state distortion necessary to generate SP is not available 
so that SP is quenched. It is seen that an increase of k, or a diminution of k, widens the 
61 range of occurrence of SP. The table shows that this is directly related to an increase 
in h,(O, = 0). 

director tilt is sufficiently away from the homeotropic it should be possible to  suppress 
SP which occurs above the H D  threshold. 

In the related, though mathematically simpler, case of PD it is shown [27] that the 
language of torques [26] developed for understanding the instability mechanism of 
convective flows can be utilized to obtain a qualitative understanding of the PD 
instability. This task is not very simple in the present case as all expressions contain 
functions of the H D  tilt 8 which is itself a nontrivial function of z (or 5) .  Still, certain 
qualitative statements can be made. Stating that the director field minimizes its total 
free energy by relaxing out of the xz plane via a twist is equivalent to asserting that 
the ground state is unstable against a twist fluctuation owing to a positive feedback 
mechanism; after all, the torque equations have been dervied by minimizing the excess 
free energy Ff’ associated with the perturbations. As in the case of PD [27], 
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this minimization can be traced to the occurrence of cross terms in FA2) which are 
proportional to terms O,’, q!fz, 8,; qY, etc. 

While applying the torque language, the total torque is split up into different terms 
out of which those torques, which have a destabilizing influence, are singled out. In 
the present case it can be tentatively suggested that there are, perhaps, two destabiliz- 
ing mechanisms at  work: torques - e(O)4lYz, e(0)0(,, may be expected to act near the 
sample centre while terms -f(0)O,z@,, Z(8)0,z0,’, may be important near the sample 
boundaries; the latter torques owe their existence explicitly to the distortion of the 
ground state. 

In order to bring out another facet of the phenomenon it should be noted that SP 
occurs through the growth of the perturbations 8’, 4’. Naively, any factor that helps 
(or deters) the growth of the perturbations can be said to help (or deter) the formation 
of SP. In this light, it is worth understanding the role of H. To the extent that an 
increase of H enhances the amount of HD making the ground state unstable against 
the twist, H can be said to aid the formation of SP. But the torque equations (2.6) 
show that H stabilizes both perturbations via torques xaH28’,  xuH’4’. Thus an 
increase of H to large values above SP threshold may be able to quench SP; this can 
be put to test. 

The above remarks also help understand the behaviour of h, when k, increases or 
k,  decreases. Such variations of elastic anisotropy increase Hsp (and hence h,) as a 
higher HD is needed to bring about SP. But a higher H implies a greater magnetic 
stabilization of both 8’ and 4’; this would cause the SP threshold to increase further. 
Thus it is clear that when the elastic ratios reach their respective limits, h, should 
diverge. In the next section we shall briefly examine the case of PD to show how 
differently H acts on the perturbations leading to a qualitatively different behaviour 
of the PD threshold. 

The nonoccurrence of SP when H is rotated by a sufficiently large angle 8, in the 
xz plane (figure 4) can also be tentatively understood from the above consideration. 
Let HF be the Freedericksz threshold in a given configuration (0, = 0). For 6, # 0, 
H is no longer normal to the initial director field no so that a Freedericksz threshold 
no longer exists; in addition, the effective distortion at any given field (> HF) will be 
less than the deformation at the same field in the Freedericksz geometry [24]. Hence, 
as the angle 6, increases, the effective ground state distortion decreases so that for SP 
to occur, higher fields H are necessary to produce the requisite level of HD. The 
possibility, therefore, cannot be ruled out that a limiting value of the field tilt may be 
reached beyond which the stabilizing effects of an enhanced H on the perturbations far 
out weigh the destabilizing influence caused by the increased HD; SP may get quenched. 

A physical explanation of the diminution of h, to 1 as the initial director tilt 8, 
exceeds a limiting angle (figure 5) does not appear to be straightforward. It is easy to 
appreciate that for small tilts 0, away from the homeotropic, the decrease in the 
Freedericksz threshold is roughly represented by (dH,/dB, )/HG - (1  - k,)B, / k ,  . But 
for h, to decrease with increasing 8,, Hsp has to diminish faster than H, does; this 
would only indicate a strengthening of the destabilizing torques with increasing 0, and 
a consequent decrease in the HD necessary to give rise to SP. In the limit 0, + O,,  as 
Hsp + H,(8,), the very mechanism (of HD) required for generating SP ceases to exist 
so that SP may be suppressed for initial director tilt sufficiently away from the 
homeo tropic. 

For TMV, 0, being only 0.03 radian may look very small; but we must note that 
in this case the homeotropic value h, (0, = 0) is itself slightly above 1 ( z  1.01 5). In 
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k2 = K 2 / K l  and k3 = K , / K ,  are elastic ratios. The stripe phase occurs above the homogeneous 
distortion when 0 < 0, < 0, where 0, is the initial director tilt (radian). (0, = 0 is 
homeotropic orientation). Os is determined from the exact calculation described in $4. In 
the range Bs < 0, < 0, the stripe phase will not set in above the Freedericksz transition. 
In the interval 0, < 0, < nj2, a static periodic deformation should occur; a homogeneous 
distortion is no longer favourable (0, = 4 2  is homogeneous alignment). 0, is found 
from (5.2). The polymeric nematic TMV [23] has k2 = 0.25, k3 = 10. h,(B, = 0) = Hsp 
(0, = O)/H,(0, = 0) is the ratio of the stripe phase threshold to the bend Freedericksz 
field. Note that B S ,  the 0, range of occurrence of SP, is wider larger the value of 
h,(& = 0). 

0.010 
0.010 
0.025 
0.0 10 
0.100 
0.250 
0.100 
0.250 

1 .o 
1.5 
2.0 
2.0 
5.0 

10.0 
10.0 
15.0 

0.21 1 
0.115 
0.1 16 
0.070 
0.057 
0.032 
0.018 
0.0 16 

0.228 
0.277 
0.486 
0.317 
1.079 
1.439 
1.209 
1.463 

1.0604 
1.0210 
1.0342 
1.0111 
1.0235 
1,0153 
1.0046 
1.0056 

addition, figure 5 shows that greater h,(8, = 0), higher the corresponding 8,. Thus, 
the range of existence of SP broadens when k3 is decreased and k,  enhanced. This 
is borne out by the above table which lists 8, and h,(8, = 0) for different elastic ratios. 
Lastly, the variation of h, or Q with 8, is not linear; the nonlinearity is more 
pronounced when k, is sufficiently small (figures 5 (c), ( d ) ) .  

5. Static periodic distortion (PD) in tilted nematic 
Consider the nematic aligned as in (2.1) at an angle 8, with z axis. Let H be 

impressed normal to no in the xz plane. If k2 is sufficiently small, a periodic distortion 
(PD) having the symmetry of Mode 1 (2.8) and periodicity along y should occur at 
a threshold HP(8, )  lower than the homogeneous Freedericksz threshold H,(8,) of 
(2.2). For given k, ,  k3 the ratio &(el) = Hp(OI)/H,(OI) will be lowest for 8, = 4 2  
(homogeneous no). As 8, is diminished, &(el) increases until, when 8, + 8,(k2, k3) ,  
Rp(8,)  + 1; thus, for 8, < 8,, PD is no longer possible; only HD should occur. It 
must be remembered that in the limit Rp(8,) -, 1, the domain wave vector of PD, 
Q ,  + 0. Thus, PD and HD have a meeting point; this is an important qualitative 
difference between SP and PD [8]. 

It seems instructive to deduce 8, for different elastic ratios and compare these 
values with the corresponding values of BS. The method followed in [13] is most suited 
for this purpose. With 8 = constant and 8’, 4’ depending only on y ,  z ,  (2.6) becomes 

} (5.1) 
r, = ~ ~ 8 , ’ ~ ~  + a(e,)e:, + e(8,)4:,, + XoH28‘ = 0; 

I-4 = K 4:yy + j ( 4 ) 4 I z z  + e(4>e,’,, = 0 
The boundary conditions are still (2.7). Seeking solutions of the form (3.3), qy is used 
as the order parameter of PD. The threshold condition obtained from (5.1) and (2.7) 
is expanded in powers of q; and the limit qy + 0 yields the following expression for 
the critical angle 8,: 

sin2@, = k2k3/[( l  - 8/n2)(1 - k2)’ + k,(k, - k,)]. (5.2) 
PD is more favourable than H D  only when sin’ O1 > sin’8,. 
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Before taking up particular cases for study the following points must be noted. To 
linear order, as is clear from (5.1), the out of plane $‘ perturbation is not coupled to 
H; the twist occurs essentially in a plane normal to H. This appears to be the main 
reason why PD and HD have a meeting point. When 8, + 8,, Hp(8,)  -+ Hc(8,)  and 
in the same limit the dimensionless PD domain wave vector Q p  + 0. This behaviour 
of PD should be contrasted with the behaviour of SP; when 8, + 8,, through h, + 1, 
Q does not approach zero but approaches a lower limiting value. 

A list of 8, values for different k,,  k ,  are presented in the table alongside the 8, 
values. Take, for instance, TMV with k, = 0.25, k, = 10; for this material, 
Bs = 0.03 and 8, = 1.44. This means that for this material one should be able to 
detect a Freedericksz transition in the interval 0.03 < 8, < 1.44; above the 
Freedericksz threshold, SP will not occur. In the range 1.44 < 8, < 4 2 ,  PD should 
set in; HD is not energetically favourable in this range of initial director tilt. When 
0 d 8, < 0.03, first HD appears above the Freedericksz threshold and then, at a 
higher field, SP will set in. Thus, in a way, table represents a phase diagram which 
gives the different intervals of existence of the distortions with respect to the initial 
director tilt. It is seen that the 8, range of existence of SP increases when k, decreases 
or k,  increases. On the other hand, the 8, range of occurrence of PD widens when k, 
and k, are diminished. 

The behaviour of PD may be qualitatively understood as follows [lo, 271. When 
the director tilt is close to homogeneous, k2 is the principal elastic ratio which decides 
the occurrence of PD; a smaller k,  naturally widens the range of existence of PD. As 
the bend couples to only splay in HD but couples to both splay and twist in PD, it 
is natural that an increase in k, will result in an enhancement of the PD threshold 
relative to the HD threshold; thus an increase in k,  should curtail the 8, range of 
occurrence of PD. 

6. Related geometries and concluding remarks 
As the unstable modes in SP and PD have the same symmetry, it appears possible 

to make tentative predictions on the SP threshold in two cases which have not been 
considered so far in the present work. 

6.1. Oblique director tilt; rigid anchoring; oblique magnetic field 
Consider the initial director field (2.1) subjected to the oblique magnetic field 

H’ = ( H C  cos$, H‘ sin$, - H S  cos$) (6.1) 
applied normal to n,. If the nematic possesses moderate elastic anistropy then above 
the HD threshold 

Hk($, 4)  = (./2h)[a(e,)j(e,)/~,(a(8,)sin~$ + j(4)cos2$}1”’ (6.2) 
the homogeneous distortion will be 

n = (sin 8 cos 4,  sin$, cos0 cos 4); 8 = 8(z); 4 = +(z); 

8(+h) = 8,; $ ( k h )  = 0. (6.3) 
Both 0 and $, which are even with respect to the sample centre, are governed by two 
nonlinear coupled equations. 

If k,,  k,  are sufficiently small and $ z 0, then instead of HD(6.3), PD sets in with 
the perturbations 8’, $’ having the symmetry of Mode 1 as the PD threshold Hi($, 0,) 
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is lower than H i  (6.2). When $ is enhanced (i.e. when H’ becomes more oblique) 0‘, 
4’ do not retain their modal purity. The modes get mixed so that each perturbation 
results from a superposition of odd and even parts. As Mode 2 is energetically less 
favourable than Mode 1, the mode mixing effectively enhances H i  with respect to Hi.. 
When $ --+ a higher limit $ p ,  H i  exceeds Hb so that for $ > $,,, PD is suppressed 
and HD should occur [lo]. 

If the nematic possesses suitable k, ,  k,  then first HD(6.3) sets in at HL. When H 
is incremented further, Mode 1 SP can be expected to occur, at Hip ($, 0, )  if $ x 0 
as the ground state twist 4 will not be appreciable. The similarities of the modal 
symmetry between PD and SP indicate that when $ is increased, the scaled threshold 
hA($, 0,)  = Hip ($, 0 , ) / H ;  ($, 0,)  should also increase. When $ + a limit $,, 
/zY($, 0 , )  may diverge so that for $ > $,, SP may not occur. This may be true 
particularly for materials with sufficiently high BS (i.e. nematics with low k z ,  k , ;  see 
the table). The above possibility may not be realized for materials having very low 0, 
(i.e. k,  small and k,  large) as the effects of H’ may not change appreciably with $. 

6.2. Effects of weak anchoring; H ,  no in xz plane 
We now go back to the initial configuration (2.1) and H applied normal to no in 

the xz plane. Using the Rapini-Papoular picture and the assumption of equal anchor- 
ing energy at the two sample planes, the ground state is found to be described by the 
surface free energy density W, 

W, = (B,/2)sin2(0 - 0,) at z = + h ,  - h  (6.4) 

a(@)@,, +_ (BO/2)sin(26’ - 20,) = 0 at z = + h  (6.5) 

corresponding to the boundary conditions. 

where BB is the splay anchoring strength. The ground state HD is calculated by solving 
(2.3) with (6.5). In the limit B,h + a(0,) ,  (6.5) reduces to (2.4) corresponding to rigid 
anchoring. When B, is reduced, not only does the HD threshold diminish, the effective 
HD in the sample also decreases; this is mainly because 0 at z = k h does not remain 
at 8, but relaxes away from that value in order to accommodate the distortion 
in the bulk as H i s  increased. This yielding of the director orientation at the boundaries 
brings down the effective HD in the sample. 

The perturbations 8’, 4’ are associated with the additional surface free energy 
density 

Wo’ = (B,/2)(0’)’ cos(20 - 20,) + (B4/2)(4’)* at  z = + h, - h, (6.6) 

which yields the boundary conditions 

at z = k h , )  

where B, is the twist anchoring strength; in (6.7), we again ignore the terms [ ] as we 
consider 0‘, 4’ to depend on y and z.  It may be noted that while HD is determined 
by B,, SP will depend upon both B, and B,. 
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At this stage it may be recalled [ll-141 that if the nematic has suitable elastic 
anisotropy (k2,  k, small) then instead of HD, PD will set in. It has been rigourously 
shown [ll-141 that the formation of PD is encouraged by a diminution of B,; on the 
other hand, a decrease in B, may suppress PD altogether. Within reasonable limits, 
a slackening of either anchoring leads to a widening of the domains. 

The above results appear to be valid for SP also. The following statements can be 
tentatively made: (1) A lowering of B, should bring down the SP threshold as a 
slackening of the twist anchoring should encourage the generation of the additional 
(twist) degree of freedom 4’. (2) As mentioned earlier, a decrease in B, is associated 
with diminution of total distortion of HD as the boundary orientation yields when H 
is enhanced. Thus, the scaled SP threshold h, may increase when B, is diminished; 
there may even exist a cutoff limit for B, such that SP cannot exist when B, 
is decreased below this limit. (3) The SP domain width can be expected to increase 
when either anchoring strength is diminished; this is due to the nonrigid boundary 
conditions (6 .7)  which no longer ensure that the two perturbations vanish at the 
boundaries. 

6.3.  Concluding remarks 
The threshold and domain wave vector of SP have been studied as functions of 

elastic ratios and initial director tilt under the assumption that SP occurs when H is 
raised above the H D  threshold. Approximate and exact calculations yield results in 
good agreement with previous theoretical work [8] and in partial agreement with 
experiment [7]. While some of the results (notably those connected with SP threshold) 
can be qualitatively understood on the basis of energetics, the variation of SP domain 
which is not very clear. The realization that SP and PD (which occurs in certain 
polymer nematics) may set in due to the growth of perturbation modes of the same 
spatial symmetry encourages a comparison of these distortions and leads to tentative 
predictions for SP in configurations involving oblique magnetic field or weak anchor- 
ing. The rather wide range of elastic ratios over which SP is shown to exist [8] indicates 
that SP, which has been primarily observed in low molecular weight nematics close 
to TNA [7] may also occur in polymer nematics such as TMV [23]. 

The main results may be summarized as follows: (1) SP should be favourable when 
k,  is small and k, large. Heating the sample away from T,, should cause SP domains 
to become narrower before SP is quenched. While the divergence of SP threshold is 
known [7, 81, it appears necessary to gather more detailed data on SP domain width; 
(2) At a given temperature SP should be quenched when a small angle of rotation of 
the field makes the field nonorthogonal to the initial undistorted director orientation. 
Here again the present work is in qualitative agreement with [7, 81 but the result that 
SP domains should widen when the field is rotated is subject to an experimental check; 
(3) When the initial director tilt is sufficiently removed from the homeotropic SP may 
not occur above the H D  threshold; as the SP wave vector shows a sharp decline with 
variation of director tilt, it is concluded that SP may get quenched. These calculations, 
which may be of only academic interest at present, have been presented mainly 
to compare SP with PD. SP has no meeting point with HD, but PD does merge 
into HD when elastic ratios and initial director tilt approach their respective limits. 
It becomes clear from the present work that nematics with sufficient elastic anisotropy 
may undergo PD, HD and also SP above HD threshold for different ranges of director 
tilt. 
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All the above results have been derived by assuming that perturbations are small. 
The linear threshold calculations are only valid at threshold and are not of much use 
to predict the absolute magnitudes of perturbations above SP threshold. Thus the 
possibility suggested by the torque equations (2.6),  that SP may be quenched when H 
is increased sufficiently above SP threshold, must be checked experimentally; it should 
be interesting to find out how the SP domain width varies in this case. The results have 
been obtained using the rigid anchoring hypothesis. A systematic study of SP with 
different substrates would make it worth while to perform more realistic calculations 
including the effect of finite anchoring energy. 

Lastly, the possibility cannot be ruled out that an electric field substituted for H 
in the bend Freedericksz geometry may generate SP above the HD threshold. In this 
case, however, it may be necessary to take into account flexoelectricity as well as the 
distortion of the electric field caused by director gradients to obtain accurate theoretical 
estimates of SP threshold and width. 
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